

Presentation to the WA Works and Parks Annual State Conference

14th August 2014

By **Stephanie Camarena**

The Product

PolyCom Stabilising Aid is a granular polymer-based product for stabilising any of the materials used in building and maintaining roads, airstrips and other earthworks.

It is used extensively with a wide variety of naturally occurring materials including pit gravel, clay, and both fine and coarse gravel.

PolyCom Stabilising Aid

- PolyCom is listed with Eco-Buy and Sustainable Choice NSW
- Factor Ten has estimated PolyCom's carbon footprint for the construction and maintenance using PolyCom Stabilising Aid and compared to traditional methods
- PolyCom's carbon footprint follows to PAS2050 standards (ISO14044)

The Choices. The Differences.

Product	Cement GP	PolyCom Stabilising Aid		
Product quantity	560 tonnes	252 bottles		
Product transportation onsite	21 x 38 tonnes trucks over 960kms	1 x 1 ton ute over 960kms		
Machinery on site	Roller Watercart Stabiliser (from Perth)	Roller Watercart Grader		
Water usage	Over 7,000 kL	Over 3,120 kL		
Quarry material	26,000 tons from nearby quarry (5kms)			
Surface treated	2100m (L) x 0.2m (D) x 30m (W)			

Scarifying

Compacting

Airstrip finished

CIV 57 - CBR 227 %

FACTOR TEN

CLEGG IMPACT VALUES REPORT TO: SKIPPERS AVIATION CREW ROOM 35 FAX (08) 9479 7090 OR (08) 9479 7063 FOR PLUTONIC GOLD MINE DATE READING TAKEN 06/01/14 TIME READING TAKEN 1000 HRS 18 630m 72 720m 810m 900m 33 54 NOTE: Dash 8-100 (102 model: >14 Dash 8-100 (106 model): >16 Dash 8-300: >18 70 1170m Metro:>10 Brasilia 1260m Centre line >20. One isolated centre line reading may be <20 but >15 1350m Readings taken 10m either side of centre line must be >15 1440m 1530m 1620m SITE CONTACT: Stijn Kuppers / Allison Weish 1710m SITE PHONE: 0899 810 700 1800m 1880m 1970m 2060m

CIV Test 12 months post treatment
 First intervention grade, wet
 and roll CIV's still high

Findings on comparison with cementitious stabilisation

Scenarios	Greenhouse gas emissions in t CO ₂ -e (1km / 6m width / 200mm depth)	Other impacts
Scenario 1 Portland 75 /Fly Ash 25	52.19	Emissions of airborne pollution organic and inorganic Arsenic, cadmium, mercury. Lead, byrellium, boron, chromium and other heavy metals released during production and throughout the life of the road (rain events)
Scenario 2 Slag 85 / Lime 15	21.25	Pollutants leaching out such as vanaidum
Scenario 3 PolyCom with mixer	3.06	Water savings 50% on average. Environmentally inert, food grade product,
Scenario 4 PolyCom no mixer	2.39	Water savings 50%, environmentally inert, food grade product, min. 45% bio-product

- Financial savings of 60-70% over \$105k
- Carbon emissions savings of 90% over 500 tons of CO₂-e
- Water savings:
 - Over 50% estimated
- Other:
 - Avoid toxic chemicals (production and leaching)
 - Avoid 21 loaded trucks over 2,000kms
 - Avoid damage to adjacent roads

Example compliance to legislation

New Strategic Cropping Land (SCL) Act in Queensland. The SCL Act has the following specific requirements:

- "Water or liquid used for dust suppression or stabilisation on land that must be restored to SCL must satisfy the following"
- 1. The maximum electrical conductivity (EC) must not exceed 1,300µ S/cm
- The maximum sodium adsorption ratio (SAR) must not exceed 6;
- 3. The maximum bicarbonate ion concentration must not exceed 100mg/L; and
- 4. The pH range must be between 6.5 and 9.0"

Block Reference	Polycom Soil Stabilizer		Payment Status	Invoiced					
Report No. HTS1829190-27062013			Date of Report		2/07/2013				
Field Information									
Crop	Default	Soil Texture	Default	Irrigation Type					
Variety	Default	Soil Structure		Treatment Area	0				
Crop Stage	Default	Soil Colour		Yield Goal	0.00				
Method	Element	LOD	Result Units	Optimal Range	Comment				
	pН		7.3	5 - 8.5	Optimal				
	EC		0.03 mS/cm	0.28 - 0.9	low salinity				
G3a	Nitrate-N (water)		0.0 mg/L	0.5 - 10	Low				
	Phosphate-P		1.50 mg/L	0.5 - 2	Optimal				
L3b	Potassium (water)		0.0 mg/L	0.5 - 15	Low				
L1b	Calcium (water)		1.0 mg/L	10 - 60	Low				
L2b	Magnesium (water)		0.0 mg/L	10 - 100	Low				
L4b	Sodium (water)		8.0 mg/L	20 - 150	Low				
J1a	Sulfate-S (water)		1.5 mg/L	5 - 50	Low				
K1a	Zinc (water)		0.00 mg/L	0.5 - 2	Low				
K1a	Copper (water)		0.00 mg/L	0.02 - 0.2	Low				
K1a	Manganese (water)		0.00 mg/L	0.2 - 0.5	Low				
K3b	Iron (water)		0.00 mg/L	0.01 - 0.3	Low				
K5	Boron (water)		0.00 mg/L	0.02 - 0.5	Low				
E1a	Chloride (water)		0.4 mg/L	20 - 350	Low				
	Carbonate		0.00 meq/L as	s CaCO3 0.05 - 0.1	Low				
	Bi-carbonate (HCO3)		0.57 meg/L as	s CaCO3 1.5 - 2	Low				

For more information:

Please contact Stephanie Camarena
Founder and Director
+(61) 411 837 395

scamarena@factor-ten.com.au

Twitter: @factorten

Facebook: www.facebook.com/FactorTen